
Inequality in triangle involving medians
https://www.linkedin.com/groups/8313943/8313943-6369046791299624961
Let ma;mb;mc be lengths of the medians of a triangle ABC:Prove that
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Solution by Arkady Alt , San Jose, California, USA.
Let ha; hb; hc be lenghts of heighs of a triangle ABC and F be it�s area
Since mx � hx; xhx = F; x 2 fa; b; cg and F = sr;where s is semiperimeter,
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Since by Cauchy Inequality
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prove inequality
(1) ma +mb +mc � 4R+ r:
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; ab+ bc+ ca = s2 + 4Rr + r2;

s2 � 4R2 + 4Rr + 3r2(Gerretsen�s Inequality) and R � 2r we obtain
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1. Sidelengths majorant for product of two medians�problem 5291, SSMA
February 2014,
two solutions in May issue 2014,p.6,7
http://ssma.play-cello.com/wp-content/uploads/2016/03/May-2014-2.pdf,
or
http://www.equationroom.com/Publications/Suggested%20problems%20(with%20solutions)/
In%20School%20Science%20and%20Mathematics%20Journal%20(SSMJ)/5291-

Solutions%20May-2014.pdf
and two my solutions
http://www.equationroom.com/Publications/Suggested%20problems%20(with%20solutions)/
In%20School%20Science%20and%20Mathematics%20Journal%20(SSMJ)/5291_2%20my%20solutions.pdf

1


