Inequality in triangle involving medians

https://www.linkedin.com/groups/8313943/8313943-6369046791299624961
Let m_{a}, m_{b}, m_{c} be lengths of the medians of a triangle $A B C$. Prove that $\frac{9}{4 R+r} \leq \frac{1}{m_{a}}+\frac{1}{m_{b}}+\frac{1}{m_{c}} \leq \frac{1}{r}$.

Solution by Arkady Alt, San Jose, California, USA.

Let h_{a}, h_{b}, h_{c} be lenghts of heighs of a triangle $A B C$ and F be it's area
Since $m_{x} \geq h_{x}, x h_{x}=F, x \in\{a, b, c\}$ and $F=s r$, where s is semiperimeter, then $\frac{1}{m_{a}}+\frac{1}{m_{a}}+\frac{1}{m_{a}} \leq \frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}}=\frac{a}{2 F}+\frac{b}{2 F}+\frac{c}{2 F}=\frac{s}{F}=\frac{1}{r}$.
Since by Cauchy Inequality $\frac{1}{m_{a}}+\frac{1}{m_{b}}+\frac{1}{m_{c}} \geq \frac{9}{m_{a}+m_{b}+m_{c}}$ remains to prove inequality
(1) $m_{a}+m_{b}+m_{c} \leq 4 R+r$.

Noting that $\left(m_{a}+m_{b}+m_{c}\right)^{2}=\frac{3\left(a^{2}+b^{2}+c^{2}\right)}{4}+2 \sum_{c y c} m_{a} m_{b}$,

$$
m_{a} m_{b} \leq \frac{2 c^{2}+a b}{4}
$$

and $a^{2}+b^{2}+c^{2}=2\left(s^{2}-r^{2}-4 R r\right), a b+b c+c a=s^{2}+4 R r+r^{2}$,
$s^{2} \leq 4 R^{2}+4 R r+3 r^{2}$ (Gerretsen's Inequality) and $R \geq 2 r$ we obtain
$\left(m_{a}+m_{b}+m_{c}\right)^{2} \leq \frac{7\left(a^{2}+b^{2}+c^{2}\right)+2(a b+b c+c a)}{4}=\frac{7 \cdot 2\left(s^{2}-r^{2}-4 R r\right)+2\left(s^{2}+4 R r+r^{2}\right)}{4}=$
$\frac{16 s^{2}-12 r^{2}-48 R r}{4}=4 s^{2}-3 r^{2}-12 R r \leq$

$$
4\left(4 R^{2}+4 R r+3 r^{2}\right)-3 r^{2}-12 R r=
$$

$16 R^{2}+4 R r+9 r^{2}=16 R^{2}+8 R r+r^{2}-\left(4 R r-8 r^{2}\right)=$

$$
(4 R+r)^{2}-4 r(R-2 r) \leq(4 R+r)^{2}
$$

1. Sidelengths majorant for product of two medians-problem 5291, SSMA

February 2014,

two solutions in May issue 2014, p.6,7
http://ssma.play-cello.com/wp-content/uploads/2016/03/May-2014-2.pdf,
or
http://www.equationroom.com/Publications/Suggested\ problems\ (with\ solutions)/
In\%20School\%20Science\%20and\%20Mathematics\%20Journal\%20(SSMJ)/5291-
Solutions\%20May-2014.pdf
and two my solutions
http://www.equationroom.com/Publications/Suggested\ problems\ (with\ solutions)/
In\%20School\%20Science\%20and\%20Mathematics\%20Journal\%20(SSMJ)/5291_2\%20my\%20solutions.pdf

